Definitions | P   Q, P Q, e  X, (e < e'), e c e', {x:A| B(x)} , AbsInterface(A), E(X), E, P & Q,  x. t(x), x.A(x), pred(e), <a, b>, A, first(e), suptype(S; T), S T, Top, x:A.B(x), Void,  x,y. t(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), b, , e < e', r s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), EOrderAxioms(E; pred?; info), x:A B(x), IdLnk, left + right, Unit, EqDecider(T), Type, P  Q, strong-subtype(A;B), , Id, f(a), a:A fp B(a), EState(T), ES, x:A. B(x), x:A B(x), t T, s = t, A c B, (x l), locl(a), True, T, if b then t else f fi , case b of inl(x) => s(x) | inr(y) => t(y), P  Q, let x,y = A in B(x;y), f**(e), y=f*(x) via L, hd(l), x:A. B(x), y is f*(x), , p  q, p  q, p   q, e = e', deq-member(eq;x;L), a = b, a = b, qeq(r;s), q_less(a;b), q_le(r;s), eq_atom$n(x;y), [d] , = , = , a < b, = , x f y,  , a < b, null(as), x =a y, (i = j), i z j, i <z j, p =b q, tt,  b, ff, eqof(d), es-eq(es), False, f**(x), f(x)?z, f g, IsPrimeIdeal(R;P), IsIntegDom(r), a b, IsMonHom{M1,M2}(f), IsGroup(T;op;id;inv), IsMonoid(T;op;id), monot(T;x,y.R(x;y);f), Cancel(T;S;op), FunThru2op(A;B;opa;opb;f), fun_thru_1op(A;B;opa;opb;f), Dist1op2opLR(A;1op;2op), IsAction(A;x;e;S;f), IsBilinear(A;B;C;+a;+b;+c;f), BiLinear(T;pl;tm), Inverse(T;op;id;inv), Comm(T;op), Assoc(T;op), Ident(T;op;id), CoPrime(a,b), Connex(T;x,y.R(x;y)), AntiSym(T;x,y.R(x;y)), Trans(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Refl(T;x,y.E(x;y)), IsEqFun(T;eq), Inj(A;B;f), InvFuns(A;B;f;g), a =!x:T. Q(x), SqStable(P), e (e1,e2].P(e), e [e1,e2].P(e), e [e1,e2].P(e), e [e1,e2).P(e), e [e1,e2).P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e<e'.P(e), e loc e' , (e <loc e'), l_disjoint(T;l1;l2), Outcome, q-rel(r;x), r < s, ( x L.P(x)), x L. P(x), a < b, a <p b, a b, a ~ b, b | a, Dec(P), t.1, inl x , inr x |